Комментарии:
Want a tutorial
Ответитьyes please let's have a full polars tutorial to analyse a kaggle dataset
ОтветитьKaggle competition tutorial
ОтветитьYes Sir Nick, Kaggle competition, If it can be a live stream
Thanks
Using the right tool for the job: DuckDB.
ОтветитьShow us a vectorized operation (simd) operation. Unless you're going to compare that to polars there's really no point
ОтветитьMaybe do a better test 😂
ОтветитьHey man is there any difference if we install polars from shell and directly on the jupyterlab
ОтветитьMilliseconds.
ОтветитьNO
ОтветитьWow that's fast
ОтветитьImport polars as pd 🎉
Ответитьi think bro doesn't know how fast is rust
ОтветитьJust use chunking with pandas and you're good to go
ОтветитьHow to build a diffusion model?
ОтветитьYes Sirrrrrr
ОтветитьWe want Polars🎉 tutorial
ОтветитьNext library :-
Bears.
Then?
Grizzly bears.
What about pickle?
ОтветитьKaggle 💪
ОтветитьYes pls
ОтветитьBut what's the catch?
Ответитьwhy jupiter?
ОтветитьYes we need
ОтветитьLet's see you run it
ОтветитьYeah sure need a polar library tutorial ❤❤.
ОтветитьFirst tell us how to use black theme for jupiter lab
Ответитьnice bro. i didn't leave a negative comment
ОтветитьPolars always crashes the kernel, unlike pandas
ОтветитьHave you created any end to end follow along tutorials? I'd like to learn by following along if possible. Thanks for the content!
Ответитьwould like to see a full video of how the big is difference for other methods
ОтветитьWRONG ADVICE!
If you are new to pandas stick with it, learn enough to be considered average, then move on to polars.
- don't spend time learning every new technology, you will end up learning nothing
- polars is fast and new, but Pandas is still the one with the most developed ecosystem, community, and job offers.
waiting for the tutorial
ОтветитьPolars tutorial abeg😂😂
ОтветитьTips for the lazies like me: ask chatgpt to migrate your code snippets from pandas to Polars 😂
ОтветитьHave you tested how much memory is consumed? Sometimes performance is not everything, I can use all my computer resources to run an application but what is the cost? You end up having a super laggy computer as your memory is mostly consumed
ОтветитьPyspark >>
Ответитьpolars also more consistent with the time per op
ОтветитьDo you know why?
ОтветитьDefinitely
ОтветитьIndeed
Ответитьpolars uses lazy loading, so it isn't a fair comparison.
ОтветитьHow fast it is? 5% of the c++ speed, what a fucking joke
ОтветитьPlease do a tutorial on this for cnn-lstm hybrid model for image classification
Ответитьtheres pandas 2.0 coming up....check out the beta version
ОтветитьMy only question is in what use case would you need something faster than pandas? I have been doing data science for a couple of years now and even the biggest datasets don't need that much time to load on pds
Ответить3rd party libraries? Fucking cringe
ОтветитьIs it better/faster than R ?
ОтветитьThen why not use polar pandas?
Ответитьyou lost me when you said rust
Ответить