Комментарии:
you lost me when you said rust
ОтветитьThen why not use polar pandas?
ОтветитьIs it better/faster than R ?
Ответить3rd party libraries? Fucking cringe
ОтветитьMy only question is in what use case would you need something faster than pandas? I have been doing data science for a couple of years now and even the biggest datasets don't need that much time to load on pds
Ответитьtheres pandas 2.0 coming up....check out the beta version
ОтветитьPlease do a tutorial on this for cnn-lstm hybrid model for image classification
ОтветитьHow fast it is? 5% of the c++ speed, what a fucking joke
Ответитьpolars uses lazy loading, so it isn't a fair comparison.
ОтветитьIndeed
ОтветитьDefinitely
ОтветитьDo you know why?
Ответитьpolars also more consistent with the time per op
ОтветитьPyspark >>
ОтветитьHave you tested how much memory is consumed? Sometimes performance is not everything, I can use all my computer resources to run an application but what is the cost? You end up having a super laggy computer as your memory is mostly consumed
ОтветитьTips for the lazies like me: ask chatgpt to migrate your code snippets from pandas to Polars 😂
ОтветитьPolars tutorial abeg😂😂
Ответитьwaiting for the tutorial
ОтветитьWRONG ADVICE!
If you are new to pandas stick with it, learn enough to be considered average, then move on to polars.
- don't spend time learning every new technology, you will end up learning nothing
- polars is fast and new, but Pandas is still the one with the most developed ecosystem, community, and job offers.
would like to see a full video of how the big is difference for other methods
ОтветитьHave you created any end to end follow along tutorials? I'd like to learn by following along if possible. Thanks for the content!
ОтветитьPolars always crashes the kernel, unlike pandas
Ответитьnice bro. i didn't leave a negative comment
ОтветитьFirst tell us how to use black theme for jupiter lab
ОтветитьYeah sure need a polar library tutorial ❤❤.
ОтветитьLet's see you run it
ОтветитьYes we need
Ответитьwhy jupiter?
ОтветитьBut what's the catch?
ОтветитьYes pls
ОтветитьKaggle 💪
ОтветитьWhat about pickle?
ОтветитьNext library :-
Bears.
Then?
Grizzly bears.
We want Polars🎉 tutorial
ОтветитьYes Sirrrrrr
ОтветитьHow to build a diffusion model?
ОтветитьJust use chunking with pandas and you're good to go
Ответитьi think bro doesn't know how fast is rust
ОтветитьImport polars as pd 🎉
ОтветитьWow that's fast
ОтветитьNO
ОтветитьMilliseconds.
ОтветитьHey man is there any difference if we install polars from shell and directly on the jupyterlab
ОтветитьMaybe do a better test 😂
ОтветитьShow us a vectorized operation (simd) operation. Unless you're going to compare that to polars there's really no point
ОтветитьUsing the right tool for the job: DuckDB.
ОтветитьYes Sir Nick, Kaggle competition, If it can be a live stream
Thanks
Kaggle competition tutorial
Ответитьyes please let's have a full polars tutorial to analyse a kaggle dataset
ОтветитьWant a tutorial
Ответить